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SOME MIXED PROBLEMS OF THE THEORY OF THE BENDING OF PLATES 
ON AN ELASTIC FOUNDATION* 

V.M. ALEKSANDROV and D.A. POZHARSKII 

Problems of the impression of one or two inclusions in the form of 
stiffener ribs into an infinite plate lying on an elastic foundation are 
studied. It follows from the properties of the kernels of the integral 
equations of these problems that their solutions have a non-integrable 
singularity /l/. By extending the method of "large I '* /2/, an 
asymptotic solution is first constructed for the integral equation in 
two sections. The numerical analysis performed can be useful when 
designing the structural elements of airfield road and hydrotechnical 
structures as well as buildings on the surface of an ice cover. 

1. Let a thin stiff inclusion, settling by an amount f (4 be imbedded by a force P 
along a segment y =O, Ix I< a in an infinite (--m<x, y cm) Kirchhoff-Love plate lying 
on a Winkler foundation. When interaction occurs between the inclusion and the plate, contact 
forces cp (2) occur that cause a break in the continuity of the generalized transverse forces. 
An integral equation in (p(x) is obtained** (**Ismail, Kh.T., Boundary-value problems of the 
bending of plates on an elastic foundation in the presence of rectilinear defects. Candidate 
Dissertation. Odessa State University, 1986.) by applying a generalized Fourier integral 
transformation to the bending equation of plates on a Winkler foundation and the boundary 
conditions, and after inserting dimensionless quantities it has the form (primes are omitted) 

(x = ax’, y = ay’, 2f (x) = af’ (r’), ‘p (y) = I/Zq’ (y’)) 

where d and s are the plate and foundation stiffnesses, respectively. This equation was 
reduced** (**Ismail, Kh.-T., -Boundary-value problems of the bending of plates on an elastic 
foundation in the presence of rectilinear defects. Candidate Dissertation, Odessa State 
University, 1986.) to an infinite system of linear algebraic equations and its solvability 
was proved. Following /2/, we here obtain explicit asymptotic formulas for cp(z) in the 
case when f(x)= i. For h>2 we assume 

k (t) = 1/.$a In 1 t 1 - F (1) 

F (t) = + 12 - \ u-3 ((u3K (u) - 1) cos u t -j- 1 - + z&W) da 

“0 

(1.2) 

The expansion 

P(t) =,i a,+ + In [i/~~zditei; a, = - 1.514; a, = 0.575 

a, = 0.0242, a, = - O.CO2.13, d, e= 0, d,= O.OUOSGS 

can be obtained. 
We will finally have 

~~~a,A,(x2-~)+~(3A2(~-x2)~ 
k l---z* 
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(12Od, In h -I 74 d, - 120~2,) + 

~~~~~~%1~2-~)+~~(~1~2-~)+~~(~~(~-4~~2)+ 

-4, T-- 3ln2))-+(ln2-+)-AA,))}+O(h-+I'+ 

The constants A,, A, are determined from a system of two linear equations /2/. For 
instance, for h =2 we have A, = -0.182 and A, = -0.0103. 

For 0 <h<2 we approximate K(u) by expression (6.4) from /2/, where A = 0.703, 

B = 1.48, C = 0.625, D = 0.649, E = 2.26, and F = 0.354. The error of this approximation on 
the real axis is 8 = 11.5%, i.e., relatively high, which is caused by the disappearance of 
the coefficient of u-5 in the asymptotic expansion of K(u) as u+oo. We hence find 

(p(‘)_$(+)+~(+)_~ 

~(.+q+?z!& 
-AZ 

+ 0714 k- 0,477X,(x)-O,133~r(r) + 

0,75$+,(r)), XC(Z)= J/A -GcGx erfl/(A -G)J, G = E, F, 0 

(1.4) 

The errors in the solutions (1.3) and (1.4) do not exceed 5 and (5 +e)%, respectively. 
As is seen from the values of q(x) presented below, juncture of the solutions (1.3) and (1.4) 
occurs for h = 2 

I 0 0.1 0.3 0.5 0.7 0.9 
rpu3) 0.0106 0.0191 0.0968 0.326 1.09 7.66 
T(1.4) 0.0222 0.0226 0.106 0.345 1.12 7.40 

The plate deflections referred to a are given by the formula 

(1.5) 

The inner integral in (1.5) is understood in the sense of the finite part /2, 31. The 
bending moments M, and M, referred to dla are easily calculated for a known function 
0 (XV Y) - By virtue of the symmetry of the problem, 
maximum at the origin. 

the quantities ) M, 1, IM, 1 have a local 
Moreover, as computations performed for different 

any ray emerging from the origin, I M, I, I M, I 
h>O show, on 

have an infinite number of local maxima that 
damp out at infinity. As a rule, the absolute maximum is the first of second local maximum. 
Diagrams ofegualmaximum moments can be constructed that are similar in shape to the arcs of 
an ellipse. The plate sections along these contours are most dangerous for the design of 
structures. An analogous effect is known in problems on the action of a concentrated force 
on a beam or slab lying on an elastic foundation /4, 5/. It is here necessary to set 
equal to the Dirac 6- function in (1.5); 

cp (r) 

of concentrated force application. 
the bending moments will be infinite at the point 

Certain values of il!f, are given below for li = 5 and Poisson's ratio Y ~0.3. It is 
seen that the local maximum is reached on the line 
1.36 

X=y for X = 0.76 
on the ordinate axis: 

while it is at y = 

w:, J) --I.162 0 -9.0971 0.5 -0.0211 0.76 -01&9 -0.0214 1.2 O&:8, 
MS. Y) -1.16" u * X51 0.0806 1.0 0.101 1.36 o:i;o r 

We also note that the bending moments along a rib are considerably greater than on a line 
perpendicular to it. 

2. The integral equation of the problem of impressing two ribs along the segments y =O, 
U,<lXl<,<b in an infinite plate lying on a Winkler foundation can obviously be separated 
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into even and odd cases 

zcp* (x) = cp (x) f cp (-47 vi (4 = f (4 * f C-4 
k = a 1 b, h = (dls)‘l4b 

To solve (2.1) by the method of "large h" we separate the ideas from /2/. Taking 
account of the properties of the function k(t) /2/, we rewrite (2.1) in the form 

We introduce the functions (the upper and lower term in the braces is taken for the 
superscript, or subscript, respectively) 

where a+ and p* are defined such that the functions I&(X) have integrable 
at the points G, &I. 

singularities 

We substitute (2.3) into (2.2) and, differentiating the equation obtained three times 

(2.1) 

(2.2) 

(2.3) 

with respect to x, we arrive at equations of a well-known type /6/ in +* (x) I which we solve 
to obtain inversion formulas for the integral operator (2.2) 

‘p**(x) = ( *(Q* + %“:, f Tf”4) + 

2 l C(Y) G+“‘(y) 
-. 
w CL) s y2 - x2 

h 
{ ;}dy){,$;‘,) (k<s<1) 

(2.4) 

The constants Qk, R,,T, are found from systems of three linear equations (omitted 
here because of their length), which must be derived by acting on (2.2) with the following 
operators: 

The need to evaluate the following integrals therefore arises: 

1 

b, = 

R 

(2.5) 

The integrals (2.5) are understood in the sense of the finite part. For n>2‘ they 
are expressed in terms of b,,b,,c,,c, and elliptic integrals. Their values for n=O,l, 
computed on a computer, are presented below 
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k 0.2 %%I 0.5 0.7 --bo 97.15 3.097 1.409 G676 
b, 1.735 ;.;;y 0.4662 0.3233 0.2271 
---cc 2.402 

0:9307 
::z 8.467 57.73 

- Cl 0.9233 1.628 0.3392 

Expanding cp** (r) in the form 

substituting (2.6) into (2.4) and equating terms of identical powers of AInh we successively 
determine the function-coefficients in the expansion (2.6). 

For instance, for f+(x)=1 we find that 

Here K = K (8%) and E= E(k) are complete elliptic integrals. The singular integrals 
in the formula for g&(z) /7f can also be expressed in terms of elliptic integrals. 

The solution (2.6) yields an error not greater than 5% for h>2. 
Starting from (2.41, we will derive asymptotic formulas for the forces P* and the 

moments M& acting on the inclusions. For example, in the even case 

kf+ = 5 XC~, (5) dx = 2X2 (Q+b, + R,b, f T+b,) f .$. 
k 

3. The principal term of the asymptotic form of the solution of the integral Eq.(2.1) 
is composed for small h /8/ by combining the exact solution of the problem of a semi-infinite 
rib and the problem of one rib of finite length studied below. The function K(U) from (1.11 
in the Wiener-Hopf equations that occur here is approximated, as earlier, by the easily 
factorizable function (6.4) from /2/. fn the cases f+(z)=l, f_(z)=sgnr, for &<=I-k 
the representation 

(3.2) 

holds where q(x) is given by (1.4). 
The forces P* and moments M* applied to the inclusions can be found for small h by 

numerical integration of (3.1) in the sense of the finite part. 
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Certain values of q+ (4 computed by using the relationships (2.7) for h=5 (the 
upper row, Q+= 0.006763, R+= 0.01156, and Z'+= -0.01378) and by (3.1) for h= 0.5 (the lower row) 
and k = 0.1 are given below 

Calculations show that the sign changes for q_(x) for h = 0.5 in the interval k <x <I, 

:+ (2) z3 0.4 3.691 0.5 2.876 0.6 2.586 0.7 2.635 0.9 5.377 
-m+(z) 4:299 1.321 1.154 1.153 1.318 4.284 

indicating the possibility of separating the inclusion from the plate, This is obviously due 
to with the fact that the Kirchhoff-Love theory describes the state of stress rather poorly 
near an intense transverse load /9/. No change in the sign of 'p_(x) is observed for h>2. 

We find from (2.8) for h = 5 and we have for 
h = 0.5 

and k = 0.1: P, = 1.082, M, = 1.413, 
and k = 0.1: P, = 0.427, M, = 0.992. 

A numerical analysis enables us to deduce that for h>2 and fixed k the mutual in- 
fluence of the inclusions does not change noticeably as h increases. At the same time, it 
can be proved that for h <h* < 1 the function q+(x) differs-from cp(z) by less than l%, 
i.e., the inclusions have practically no influence on each other ('p(x) is the solution of the 
problem for one rib located in the segment Y = 0, k <x< 1). 

Finally, having formulas for (P* (x) and expressions for the dimensionless deflections 
of a plate 0*(x, y) of the type (1.5), we compute the dimensionless bending moments M,*, M,* 
in a certain neighbourhood of the inclusions. The deductions made about these moments in 
Sect.1 remain true here also, on the whole. Thus, for k =0.1 and h =5 the function 

I M,+ I has a local extremum at the origin where 1 M,+ / = 9.2x10y, and the spacing between 
the local extrema on this semi-axis increases significantly compared with the problem of 
impressing one rib for h = 5. 

The method developed above is carried over to the solution of mixed problems of plate 
bending in the form of an infinite strip /2/ in the case of two sections of boundary conditions 
interchange. 

We also note that integral Eq.(2.1) with the minus sign corresponds exactly to the 
problem of impressing a rib into a plate lying on a Winkler foundation and having the form of 
a half-plane on whose boundary free support conditions are imposed. If the edge of such a 
plate is rigidly clamped or free of forces and moments, then the kernel of the appropriate 
integral equations cannot be represented successfully as was done in (2.1). Nevertheless, 
for sufficiently small h these equations can be solved by successive approximations by taking 
the principal term of the asymptotic form (3.1) with a minus sign as the zero-th approximation. 
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